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vascular changes representing downstream effects that are not them-
selves causative of migraine4,5. However, genetic evidence favoring 
one theory over the other is lacking. At the phenotype level, migraine 
is defined by diagnostic criteria from the International Headache 
Society6. There are two prevalent subforms: migraine without aura, 
which is characterized by recurrent attacks of moderate or severe 
headache associated with nausea or hypersensitivity to light and 
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Migraine is the third most common disease worldwide, with a life-
time prevalence of 15–20%, affecting up to 1 billion people across the 
globe1,2. It ranks as the seventh most disabling disease worldwide (and 
the most disabling neurological disease) in terms of years of life lost 
to disability1, and it is the third most costly neurological disorder, 
after dementia and stroke3. There is debate about whether migraine 
is a disease of vascular dysfunction or of neuronal dysfunction with 
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sound, and migraine with aura, which is characterized by transient 
visual, sensory, or speech symptoms usually followed by a headache 
phase similar to migraine without aura.

Family and twin studies estimate a heritability of 42% (95% con-
fidence interval = 36–47%) for migraine7, pointing to a genetic 
component of the disease. Despite this, genetic association studies 
have uncovered relatively little about the molecular mechanisms that 
contribute to migraine’s pathophysiology. Understanding has been 
limited partly because so far only 13 genome-wide significant risk 
loci have been identified for the prevalent forms of migraine8–11. 
For familial hemiplegic migraine (FHM), a rare Mendelian form of 
the disease, three ion-transport-related genes (CACNA1A, ATP1A2, 
and SCN1A) have been implicated12–14. These findings suggest that 
mechanisms that regulate neuronal ion homeostasis might also be 
involved in migraine more generally; however, no genes related  
to ion transport have yet been identified for the more prevalent  
forms of migraine15.

We conducted a meta-analysis of 22 GWA studies, including 
data for a total of 59,674 affected subjects and 316,078 controls col-
lected from six tertiary headache clinics and 27 population-based 
cohorts through our worldwide collaboration with the International 
Headache Genetics Consortium (IHGC). This combined data set 
contained more than 35,000 new migraine cases not included in pre-
viously published GWA studies. Here we present the findings of this  
meta-analysis, including 38 genomic loci harboring 44 independent 
association signals identified at levels of genome-wide significance, 
which support current theories of migraine pathophysiology and also 
offer new insights into the disease.

RESULTS
Significant associations at 38 independent genomic loci
The primary meta-analysis was carried out on all samples from 
subjects with migraine available through the IHGC, regardless of 
ascertainment. These case samples came from both individuals 
diagnosed by a doctor and individuals with self-reported migraine 
as stated on questionnaires. Study design and sample ascertainment 
for each individual study are outlined in the Supplementary Note 
(and summarized in Supplementary Table 1). The final combined 
sample consisted of 59,674 case samples and 316,078 controls in 22 
non-overlapping case–control data sets (Table 1). All subjects were 
of European ancestry (EUR). Before including the largest study from 
23andMe, we confirmed that it did not contribute any additional 
heterogeneity compared with the other population and clinic-based 
studies (Supplementary Table 2).

The 22 individual GWA studies included standard quality control 
protocols (Online Methods), summarized in Supplementary Table 3. 
Missing genotypes were then imputed into each sample using a com-
mon 1000 Genomes Project reference panel16. Association analyses 
were carried out within each study using logistic regression on the 
imputed marker dosages, with adjustments made for sex and other 
covariates where necessary (Online Methods and Supplementary 
Table 4). The association results were combined in an inverse-vari-
ance weighted fixed-effects meta-analysis. Markers were filtered for 
imputation quality and other metrics (Online Methods), leaving 
8,094,889 variants for consideration in our primary analysis.

Among the variants in the primary analysis, we identified 
44 genome-wide significant SNP associations (P < 5 × 10−8; 
Supplementary Fig. 1) that were independent (r2 < 0.1) with regard 
to linkage disequilibrium (LD). We validated these 44 SNPs by com-
paring genotypes in a subset of the sample to those obtained from 
whole-genome sequencing (Supplementary Table 5). To help identify 

candidate risk genes, we defined an associated locus as the genomic 
region bounded by all markers in LD (r2 > 0.6 in 1000 Genomes 
Project, phase 1, EUR individuals) with each of the 44 index SNPs, 
and in addition, all such regions in close proximity (<250 kb) were 
merged. On the basis of these defined regions, we implicated 38 
genomic loci for the prevalent forms of migraine, 28 of which had 
not been reported previously (Fig. 1).

These 38 loci replicated 10 of the 13 previously reported genome-
wide associations with migraine, and 6 loci contained a secondary 
genome-wide significant SNP not in LD (r2 < 0.1) with the top SNP 
in the locus (Table 2). Five of these secondary signals were found 
in known loci (at LRP1–STAT6–SDR9C7, PRDM16, FHL5–UFL1, 
TRPM8–HJURP, and near TSPAN2–NGF), whereas the sixth was 
found within one of the 28 new loci (PLCE1). Therefore, out of the 
44 independent SNPs reported here, 34 represent new associations 
with migraine. Three previously reported loci that were associated 
with subtypes of migraine (rs1835740 near MTDH for migraine with  
aura, rs10915437 near AJAP1 for migraine clinical samples, and 
rs10504861 near MMP16 for migraine without aura)8,11 showed 
only nominal significance in the current meta-analysis (P = 5 × 10−3 
for rs1835740, P = 4.4 × 10−5 for rs10915437, and P = 4.9 × 10−5 
for rs10504861; Supplementary Table 6); however, these loci have 
since been shown to be associated with specific phenotypic features of 
migraine17, and therefore a more phenotypically homogeneous sam-
ple may be required for an accurate assessment of association. Four 
out of 44 SNPs (MRVI1, at TRPM8–HJURP, near ZCCHC14, and near 
CCM2L–HCK) showed moderate heterogeneity across the individual 
GWA studies (Cochran’s Q test, P < 0.05; Supplementary Table 7);  
therefore, at these markers we applied a random-effects model18.

Characterization of the associated loci
In total, 32 of 38 (84%) loci overlapped with transcripts from protein-
coding genes, and 17 (45%) of these regions contained just a single 
gene (see Supplementary Fig. 2 for regional association plots and 
Supplementary Table 8 for additional locus information). Among the 
38 loci, only two contained ion channel genes (KCNK5 and TRPM8)19,20. 
Thus, despite previous hypotheses that migraine is a potential chan-
nelopathy5,21, the loci identified to date do not support the idea of 
common variants in ion channel genes being strong susceptibility 
components in prevalent forms of migraine. However, three other 
loci do contain genes involved more generally in ion homeostasis22–24  
(SLC24A3, ITPK1, and GJA1; Supplementary Table 9).

Several of the identified genes have previously been associated with 
vascular disease (PHACTR1, TGFBR2, LRP1, PRDM16, RNF213, JAG1, 
HEY2, GJA1, and ARMS2)25–34 or are involved in smooth muscle con-
tractility and regulation of vascular tone (MRVI1, GJA1, SLC24A3, 
and NRP1)35–38. Three of the 44 migraine index SNPs had previ-
ously reported associations in the National Human Genome Research 
Institute GWA study catalog at exactly the same SNP (rs9349379 at 
PHACTR1 with coronary heart disease39–41, coronary artery calcifica-
tion42, and cervical artery dissection26; rs11624776 near ITPK1 with 
thyroid hormone levels43; and rs11172113 at LRP1–STAT6–SDR9C7 
with pulmonary function44; Supplementary Table 10). Six of the loci 
harbor genes that are involved in nitric oxide (NO) signaling and oxi-
dative stress (REST, GJA1, YAP1, PRDM16, LRP1, and MRVI1)45–50.

For each locus, we chose the gene nearest to the index SNP to 
assess gene expression activity in tissues from the Genotype-Tissue 
Expression (GTEx) Consortium project (Supplementary Fig. 3). 
Although we found that most of the putative migraine loci genes 
were expressed in many different tissue types, we were able to detect 
tissue specificity in certain instances in which some genes showed 



©
20

16
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

Nature Genetics  ADVANCE ONLINE PUBLICATION	 �

A rt i c l e s

significantly higher expression in a particular tissue group relative to 
the others. For instance, four genes were expressed more actively in 
brain (GPR149, CFDP1, DOCK4, and MPPED2) than in other tissues, 
and eight genes were specifically active in vascular tissues (PRDM16, 
MEF2D, FHL5, C7orf10, YAP1, LRP1, ZCCHC14, and JAG1). Many 
other putative migraine loci genes were actively expressed in more 
than one tissue group.

Genomic inflation and LD-score regression analysis
To assess whether the 38 loci harbored true associations with 
migraine, rather than reflecting systematic differences between case 

and control samples (such as population stratification), we analyzed 
the genome-wide inflation of test statistics in our primary meta- 
analysis. As expected for a complex polygenic trait, the distribution 
of test statistics deviated from the null (genomic inflation factor 
λGC = 1.24; Supplementary Fig. 4), which is in line with other large 
GWA study meta-analyses51–54. Because much of the inflation for  
a polygenic trait arises from LD between the causal SNPs and  
many other neighboring SNPs in the local region, we LD-pruned the 
data to create a set of LD-independent markers (in PLINK55 with  
a 250-kb sliding window and r2 > 0.2). The resulting genomic  
inflation was comparatively reduced (λGC = 1.15; Supplementary 

Table 1 I ndividual IHGC GWA studies with numbers of case and control samples used in the primary analysis (all migraine) and in the 
subtype analyses (migraine with aura and migraine without aura)

GWA study ID Full name of GWA study

All migraine Migraine with aura Migraine without aura

Cases Controls Cases Controls Cases Controls

23andMe 23andMe Inc. 30,465 143,147 - - - -

ALSPAC Avon Longitudinal Study of Parents and Children 3,134 5,103 - - - -

ATM Australian Twin Migraine 1,683 2,383 - - - -

B58C 1958 British Birth Cohort 1,165 4,141 - - - -

Danish HC Danish Headache Center 1,771 1,000 775 1,000 996 1,000

DeCODE deCODE Genetics Inc. 3,135 95,585 366 95,585 608 95,585

Dutch MA Dutch migraine with aura 734 5,211 734 5,211 - -

Dutch MO Dutch migraine without aura 1,115 2,028 - - 1,115 2,028

EGCUT Estonian Genome Center, University of Tartu 813 9,850 76 9,850 94 9,850

Finnish MA Finnish migraine with aura 933 2,715 933 2,715 - -

German MA German migraine with aura 1,071 1,010 1,071 1,010 - -

German MO German migraine without aura 1,160 1,647 - - 1,160 1,647

Health 2000 Health 2000 136 1,764 - - - -

HUNT Nord-Trøndelag Health Study 1,395 1,011 290 1,011 980 1,011

NFBC Northern Finnish Birth Cohort 756 4,393 - - - -

NTR/NESDA Netherlands Twin Register and the Netherlands  
  Study of Depression and Anxiety

1,636 3,819 544 3,819 615 3,819

Rotterdam III Rotterdam Study III 487 2,175 106 2,175 381 2,175

Swedish Twins Swedish Twin Registry 1,307 4,182 - - - -

Tromsø The Tromsø Study 660 2,407 - - - -

Twins UK Twins UK 618 2,334 202 2,334 416 2,334

WGHS Women’s Genome Health Study 5,122 18,108 1,177 18,108 1,826 18,108

Young Finns Young Finns 378 2,065 58 2,065 157 2,065

Total 59,674 316,078 6,332 144,883 8,348 139,622

Note that chromosome X genotype data were unavailable from three of the individual GWA studies (EGCUT, Rotterdam III, and Twins UK) and were partially unavailable from 
some of the control samples (specifically, the GSK controls) used for the German MO study, meaning that the samples analyzed for chromosome X represented 57,756 cases and 
299,109 controls. Complete data were available on the autosomes for all samples.
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Figure 1  Manhattan plot showing results of the primary meta-analysis of all migraine samples (59,674 case and 316,078 control). The horizontal  
axis shows the chromosomal position, and the vertical axis shows the significance of tested markers combined in a fixed-effects meta-analysis.  
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Fig. 5) and probably reflects the inflation remaining owing to the 
polygenic signal at many independent loci, including those not yet 
significantly associated.

To confirm that the observed inflation came primarily from true 
polygenic signal, we analyzed the data from all imputed markers using 
LD-score regression56. This method tests for a linear relationship 
between marker test statistics and LD score, defined as the sum of r2 

values between a marker and all other markers within a 1-Mb win-
dow. The primary analysis results show a linear relationship between 
association test statistics and LD score (Supplementary Fig. 6) and 
suggest that the majority (88.2%) of the inflation in test statistics can 
be ascribed to true polygenic signal rather than population stratifi-
cation or other confounders. These results are consistent with the 
theory of polygenic disease architecture demonstrated previously by 

Table 2 S ummary of the 38 genomic loci associated with the prevalent types of migraine

Locus  
rank Locus Chr Index SNP

Minor 
allele MAF

All migraine Secondary signal Migraine without aura Previous  
publication  

PMID
OR  

(95% CI) P
Index  
SNP P

Index  
SNP P

  1 LRP1–STAT6– 
  SDR9C7

12 rs11172113 C 0.42 0.90 (0.89–0.91) 5.6 × 10−49 rs11172055 1.3 × 10−9 rs11172113 4.3 × 10−16 21666692

  2 PRDM16 1 rs10218452 G 0.22 1.11 (1.10–1.13) 5.3 × 10−38 rs12135062 3.7 × 10−10 - - 21666692

  3 FHL5–UFL1 6 rs67338227 T 0.23 1.09 (1.08–1.11) 2.0 × 10−27 rs4839827 5.7 × 10−10 rs7775721 1.1 × 10−12 23793025

  4 Near  
  TSPAN2–NGF

1 rs2078371 C 0.12 1.11 (1.09–1.13) 4.1 × 10−24 rs7544256 8.7 × 10−9 rs2078371 7.4 × 10−9 23793025

  5 TRPM8–HJURP 2 rs10166942 C 0.20 0.94 (0.89–0.99) 1.0 × 10−23 rs566529 2.5 × 10−9 rs6724624 1.1 × 10−9 21666692

  6 PHACTR1 6 rs9349379 G 0.41 0.93 (0.92–0.95) 5.8 × 10−22 - - rs9349379 2.1 × 10−9 22683712

  7 MEF2D 1 rs1925950 G 0.35 1.07 (1.06–1.09) 9.1 × 10−22 - - - - 22683712

  8 SLC24A3 20 rs4814864 C 0.26 1.07 (1.06–1.09) 2.2 × 10−19 - - - - -

  9 Near FGF6 12 rs1024905 G 0.47 1.06 (1.04–1.08) 2.1 × 10−17 - - rs1024905 2.5 × 10−9 -

10 C7orf10 7 rs186166891 T 0.11 1.09 (1.07–1.12) 9.7 × 10−16 - - - - 23793025

11 PLCE1 10 rs10786156 G 0.45 0.95 (0.94–0.96) 2.0 × 10−14 rs75473620 5.8 × 10−9 - - -

12 KCNK5 6 rs10456100 T 0.28 1.06 (1.04–1.07) 6.9 × 10−13 - - - - -

13 ASTN2 9 rs6478241 A 0.36 1.05 (1.04–1.07) 1.2 × 10−12 - - rs6478241 1.2 × 10−10 22683712

14 MRVI1 11 rs4910165 C 0.33 0.94 (0.91–0.98) 2.9 × 10−11 - - - - -

15 HPSE2 10 rs12260159 A 0.07 0.92 (0.89–0.94) 3.2 × 10−10 - - - - -

16 CFDP1 16 rs77505915 T 0.45 1.05 (1.03–1.06) 3.3 × 10−10 - - - - -

17 RNF213 17 rs17857135 C 0.17 1.06 (1.04–1.08) 5.2 × 10−10 - - - - -

18 NRP1 10 rs2506142 G 0.17 1.06 (1.04–1.07) 1.5 × 10−9 - - - - -

19 Near GPR149 3 rs13078967 C 0.03 0.87 (0.83–0.91) 1.8 × 10−9 - - - - -

20 Near JAG1 20 rs111404218 G 0.34 1.05 (1.03–1.07) 2.0 × 10−9 - - - - -

21 Near  
  REST–SPINK2

4 rs7684253 C 0.45 0.96 (0.94–0.97) 2.5 × 10−9 - - - - -

22 Near ZCCHC14 16 rs4081947 G 0.34 1.03 (1.00–1.06) 2.5 × 10−9 - - - - -

23 HEY2–NCOA7 6 rs1268083 C 0.48 0.96 (0.95–0.97) 5.3 × 10−9 - - - - -

24 Near  
  WSCD1–NLRP1

17 rs75213074 T 0.03 0.89 (0.86–0.93) 7.1 × 10−9 - - - - -

25 Near GJA1 6 rs28455731 T 0.16 1.06 (1.04–1.08) 7.3 × 10−9 - - - - -

26 Near TGFBR2 3 rs6791480 T 0.31 1.04 (1.03–1.06) 7.8 × 10−9 - - - - 22683712

27 Near ITPK1 14 rs11624776 C 0.31 0.96 (0.94–0.97) 7.9 × 10−9 - - - - -

28 Near  
  ADAMTSL4–ECM1

1 rs6693567 C 0.27 1.05 (1.03–1.06) 1.2 × 10−8 - - - - -

29 Near  
  CCM2L–HCK

20 rs144017103 T 0.02 0.85 (0.76–0.96) 1.2 × 10−8 - - - - -

30 YAP1 11 rs10895275 A 0.33 1.04 (1.03–1.06) 1.6 × 10−8 - - - - -

31 Near  
  MED14–USP9X

X rs12845494 G 0.27 0.96 (0.95–0.97) 1.7 × 10−8 - - - - -

32 Near  
  DOCK4–IMMP2L

7 rs10155855 T 0.05 1.08 (1.05–1.12) 2.1 × 10−8 - - - - -

33 1p31.1a 1 rs1572668 G 0.48 1.04 (1.02–1.05) 2.1 × 10−8 - - - - -

34 CARF 2 rs138556413 T 0.03 0.88 (0.84–0.92) 2.3 × 10−8 - - - - -

35 ARMS2–HTRA1 10 rs2223089 C 0.08 0.93 (0.91–0.95) 3.0 × 10−8 - - - - -

36 IGSF9B 11 rs561561 T 0.12 0.94 (0.92–0.96) 3.4 × 10−8 - - - - -

37 MPPED2 11 rs11031122 C 0.24 1.04 (1.03–1.06) 3.5 × 10−8 - - - - -

38 Near NOTCH4 6 rs140002913 A 0.06 0.91 (0.88–0.94) 3.8 × 10−8 - - - - -
aThe nearest coding gene (LRRIQ3) to this locus is 592 kb away.
Ten loci were previously reported (PubMed IDs (PMID) are listed for these loci), and 28 were newly found in this study. Each locus is labeled with protein-coding genes that overlap the 
region. Intergenic loci are also labeled as “near” to highlight the additional uncertainty in identifying relevant genes. Effect sizes and P values for each SNP were calculated for each 
study with an additive genetic model using logistic regression adjusted for sex and then combined in a fixed-effects meta-analysis. For loci that contain a secondary LD-independent 
signal passing genome-wide significance, the secondary index SNP and P value are given. For the seven loci reaching genome-wide significance in the ‘migraine without aura’ subtype 
analysis, the corresponding index SNP and P value are also given. Evidence for significant heterogeneity was found at four loci (TRPM8–HJURP, MRVI1, near ZCCHC14, and near 
CCM2L–HCK), so for those we present the results of a random-effects model. Chr, chromosome; MAF, minor allele frequency; OR, odds ratio; CI, confidence interval.
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GWA studies using samples of similar size 
with both simulated and real data57.

Migraine subtype analyses
To elucidate pathophysiological mechanisms 
underpinning the migraine aura, we car-
ried out a secondary analysis of two created 
subsets that included only samples with the 
subtypes ‘migraine with aura’ and ‘migraine 
without aura’. These subsets included samples  
only from studies in which sufficient informa-
tion was available to assign a diagnosis of one 
or the other subtype according to classification  
criteria standardized by the International 
Headache Society6. For the population-based 
studies, this involved questionnaires, whereas 
for the clinic-based studies the diagnosis was 
assigned on the basis of a structured interview 
by telephone or in person. A stricter diagno-
sis was required for the migraine subtypes, as 
it is often challenging to distinguish migraine 
aura from other neurological features that 
can present as symptoms from unrelated 
conditions. As a result, the migraine subtype 
analyses involved considerably smaller sam-
ple sizes than the main analysis (6,332 case 
samples and 144,883 controls for migraine 
with aura; 8,348 case samples and 139,622 controls for migraine 
without aura; Table 1).

As with the primary analysis, the test statistics for migraine with 
aura and for migraine without aura were consistent with underlying 
polygenic architecture rather than other potential sources of inflation 
(Supplementary Figs. 7 and 8). In our analysis for migraine without 
aura, we found seven significantly (P < 5 × 10−8) associated genomic loci 
(near TSPAN2, TRPM8, PHACTR1, FHL5, ASTN2, near FGF6, and LRP1; 
Supplementary Table 11 and Supplementary Fig. 9). All seven of these 
loci had already been identified in the primary analysis, possibly reflecting 
the fact that migraine without aura is the most common form of migraine 
(around two in three cases) and probably drove these association signals in 
the primary analysis. Notably, no loci were associated with migraine with 
aura in the other subset analysis (Supplementary Fig. 10).

To investigate whether excess heterogeneity could be contributing 
to the lack of associations for migraine with aura, we carried out a 
heterogeneity analysis of the two subgroups (Online Methods and 
Supplementary Table 12). We selected the 44 LD-independent SNPs 
from the primary analysis and used a random-effects model to com-
bine the ‘migraine with aura’ and ‘migraine without aura’ samples 
in a meta-analysis that allowed for heterogeneity between the two 
migraine groups58. We found little heterogeneity, with only 7 of the 

44 loci (at MEF2D, PHACTR1, near REST–SPINK2, ASTN2, PLCE1, 
MPPED2, and near MED14–USP9X) exhibiting signs of heterogeneity 
across subtype groups (Supplementary Table 13).

Credible sets of markers within each locus
For each of the 38 migraine-associated loci, we defined a credible 
set of markers that could plausibly be considered as causal using a 
Bayesian-likelihood-based approach59. This method incorporated 
evidence from association-test statistics and the LD structure between 
SNPs in a locus (Online Methods). A list of the credible set of SNPs 
obtained for each locus is provided in Supplementary Table 14.  
We found three loci (in RNF213, PLCE1, and MRVI1) for which the 
association signal could be credibly attributed to exonic mis-sense 
polymorphisms (Supplementary Table 15). However, most of the 
credible markers at each locus were either intronic or intergenic, 
which is consistent with the theory that most variants detected by 
GWA studies involve regulatory effects on gene expression rather 
than disruption of protein structure60,61.

Overlap with eQTLs in specific tissues
To identify migraine loci that might influence gene expression, we 
used previously published data sets cataloging expression quantitative 
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trait loci (eQTLs) in either of two microarray-based studies of samples 
from peripheral venous blood (n = 3,754) or from human brain cor-
tex (n = 550). Additionally, we used a third study based on RNA-seq 
data from a collection of 42 tissues and three cell lines (n = 1,641) 
from the GTEx Consortium project62. Although these data offered the 
advantage of a diverse tissue catalog, the number of samples per tis-
sue was relatively small (Supplementary Table 16) compared with the 
two microarray data sets, which may have resulted in reduced power 
to detect significant eQTLs in some tissues. Using these data sets, we 
applied a method based on the overlap of migraine and eQTL credible 
sets to identify eQTLs that could explain associations at the 38 migraine 
loci (Online Methods). This approach merged the migraine credible 
sets defined above with credible sets from cis-eQTL signals within a 
1-Mb window and tested whether the association signals between the 
migraine and eQTL credible sets were correlated. After adjusting for 
multiple testing, we found no plausible eQTL associations in the periph-
eral blood or brain cortex data (Supplementary Tables 17 and 18 and 
Supplementary Fig. 11). In the GTEx data, however, we found evidence 
for overlap from eQTLs in three tissues (lung, tibial artery, and aorta) at 
the HPSE2 locus and in one tissue (thyroid) at the HEY2–NCOA7 locus 
(Supplementary Table 19 and Supplementary Fig. 12).

In summary, from three data sets we found evidence implicating 
eQTL signals at only two loci (HPSE2 and HEY2). This low number 
(2 out of 38) is consistent with previous studies noting that available 
eQTL catalogs currently lack sufficient tissue specificity and develop-
mental diversity to provide enough power for meaningful biological 
insight53. No plausibly causal eQTLs were observed in expression data 
from brain tissue samples.

Gene expression enrichment in specific tissues
To understand whether the 38 migraine loci as a group are enriched 
for expression in certain tissue types, we again used the GTEx pilot 
data62 (Online Methods). We found four tissues that were signifi-
cantly enriched (after Bonferroni correction) for expression of the 
migraine-associated genes (Fig. 2). The two most strongly enriched 
tissues were part of the cardiovascular system (aorta and tibial artery). 
The two other significantly enriched tissues were from the digestive 
system (esophagus muscularis and esophageal mucosa). We replicated 
these enrichment results using the DEPICT63 tool and an independ-
ent microarray-based gene expression data set (Online Methods). 
DEPICT highlighted four tissues (Fig. 3 and Supplementary Table 20) 
with significant enrichment of genes within the migraine loci: arteries 
(P = 1.58 × 10−5), the upper gastrointestinal tract (P = 2.97 × 10−3), 
myometrium (P = 3.03 × 10−3), and stomach (P = 3.38 × 10−3).

Taken together, the expression analyses implicated arterial and 
gastrointestinal tissues. To discover whether this enrichment signa-
ture could be attributed to a more specific type of smooth muscle, 
we examined the expression of the nearest genes at migraine loci 
in a panel of 60 types of human smooth muscle tissue64. Overall, 
migraine loci genes were not significantly enriched in a particular 
class of smooth muscle (Supplementary Figs. 13–15). This suggests 

that the enrichment of migraine risk variants in genes expressed in 
tissues with a smooth muscle component is not specific to blood  
vessels, the stomach, or the gastrointestinal tract; rather, it seems to be 
generalizable across vascular and visceral smooth muscle types.

Combined, these enrichment results suggest that some of the genes 
affected by migraine-associated variants have high expression in vas-
cular tissues, and their dysfunction could have a role in migraine. 
Furthermore, the results suggest that other tissue types (for example, 
smooth muscle) could also have a role, which may become evident 
once more migraine loci are discovered.

Enrichment in tissue-specific enhancers
To further assess the hypothesis that migraine variants might operate 
via effects on gene regulation, we investigated the degree of overlap 
with histone modifications. Using candidate causal variants from the 
migraine loci, we examined their enrichment in cell-type-specific 
enhancers from 56 primary human tissues and cell types from the 
Roadmap Epigenomics65 and ENCODE projects66 (Online Methods 
and Supplementary Table 21). These variants showed the greatest 
enrichment in tissues from the mid-frontal lobe and duodenum 
smooth muscle, but their enrichment was not significant after adjust-
ment for multiple testing (Fig. 4).

Gene set enrichment analyses
To implicate underlying biological pathways involved in migraine, 
we applied a Gene Ontology over-representation analysis of the 38 
migraine loci (Online Methods). We found nine vascular-related bio-
logical function categories that were significantly enriched (adjusted 
P < 0.05) after correction for multiple testing (Supplementary Table 
22). Notably, data for the identified loci provided little statistical sup-
port for some molecular processes that have been previously linked 
to migraine, including ion homeostasis, glutamate signaling, serot-
onin signaling, NO signaling, and oxidative stress. However, a pos-
sible explanation for the lack of enrichment for these functions is 
that current annotations for many genes and pathways are far from 
comprehensive, or that larger numbers of migraine loci need to be 
identified before sensitivity can be sufficient to detect enrichment 
for these mechanisms.

For a more comprehensive pathway analysis, we used DEPICT, 
which incorporates gene coexpression information from microar-
ray data to implicate additional, functionally less well-characterized 
genes in known biological pathways, protein–protein complexes, and 
mouse phenotypes63 (by forming so-called reconstituted gene sets). 
From DEPICT, we identified 67 reconstituted gene sets that were  
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significantly enriched (false discovery rate 
(FDR) < 5%) for genes found among the 
migraine-associated loci (Supplementary 
Table 23). Because the reconstituted gene 
sets had genes in common, we clustered them 
into ten distinct groups (Fig. 5 and Online 
Methods). Several gene sets, including the 
most significantly enriched reconstituted 
gene set (abnormal vascular wound healing; 
P = 1.86 × 10−6), were grouped into clus-
ters related to cell–cell interactions (ITGB1  
protein-protein interaction, adherens junction, 
and integrin complex). Several of the other 
gene set clusters were also related to vascular 
biology (Fig. 5 and Supplementary Table 23).  
We still did not observe any support for 
molecular processes with hypothesized links 
to migraine (Supplementary Table 24);  
however, this might again have been due to  
the reasons outlined above.

DISCUSSION
In what is to our knowledge the largest genetic study of migraine so 
far, we identified 38 distinct genomic loci harboring 44 independent 
susceptibility markers for the prevalent forms of migraine. We provide 
evidence that migraine-associated genes are involved in both arterial 
and smooth muscle function. Two separate analyses, the DEPICT and 
GTEx gene expression enrichment analyses, pointed to the involve-
ment of vascular and smooth muscle tissues in common variant sus-
ceptibility to migraine. The vascular finding is consistent with known 
comorbidities and previously reported shared polygenic risk among 
migraine, stroke, and cardiovascular diseases67,68. Furthermore, a 
recent GWA study of cervical artery dissection identified a genome-
wide significant association at the same index SNP (rs9349379 in 
the PHACTR1 locus) as is associated with migraine, suggesting the 
possibility of partially shared genetic components between migraine 
and cervical artery dissection26. These results suggest that vascular 

dysfunction and possibly also smooth muscle dysfunction are likely 
to have roles in migraine pathogenesis.

The support for vascular and smooth muscle enrichment of the  
loci is strong, with multiple lines of evidence from independent 
methods and independent data sets. However, it remains likely that 
neurogenic mechanisms are also involved in migraine. For example,  
several lines of evidence from previous studies have pointed to 
such mechanisms5,69–72. We found some support for this in our 
examination of the expression of individual genes at the 38 loci 
(Supplementary Fig. 3 and Supplementary Table 25), which 
showed that several genes were specifically active in brain tissues.  
We did not observe statistically significant enrichment in brain  
across all loci, but it may be that more associated loci are needed in 
order for this to be detected. Alternatively, the lack of significant 
enrichment could be due to difficulties in collecting appropriate  
brain tissue samples with enough specificity, or other technical 
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challenges. Additionally, there is less clarity regarding the biologi-
cal mechanisms for a neurological disease like migraine compared 
with some other common diseases, such as autoimmune or cardio-
metabolic diseases for which intermediate risk factors and underly-
ing mechanisms are better understood.

Interestingly, some of the analyses highlighted gastrointestinal tis-
sues. Although migraine attacks may include gastrointestinal symptoms 
(e.g., nausea, vomiting, diarrhea)6, it is likely that the signals observed 
here broadly represent smooth muscle signals rather than gastrointes-
tinal specificity. Smooth muscle is a predominant tissue of the intestine, 
but specific smooth muscle subtypes were not available to test this 
hypothesis in our primary enrichment analyses. Instead we examined 
a range of 60 smooth muscle subtypes and found that the migraine loci 
were expressed in many types of smooth muscle, including vascular 
(Supplementary Figs. 14 and 15). These results, although not conclu-
sive, suggest that the enrichment of the migraine loci in smooth muscle 
is not specific to the stomach and gastrointestinal tract.

Our results implicate cellular pathways and provide an opportunity 
to determine whether the genomic data support previously presented 
hypotheses of mechanisms linked to migraine. One prevailing hypoth-
esis, stimulated by findings in FHM, has been that migraine is a chan-
nelopathy5,21. Among the 38 migraine loci in the current study, only 
two harbor known ion channels (KCNK5 and TRPM8)19,20, and three 
others (SLC24A3, near ITPK1, and near GJA1) can be linked to ion 
homeostasis22–24. This further supports the findings of previous stud-
ies that, in common forms of migraine, ion channel dysfunction is not 
the major pathophysiological mechanism15. However, more generally, 
genes involved in ion homeostasis could be a component of genetic 
susceptibility. Moreover, we cannot exclude that ion channels might still 
be important contributors in migraine with aura, the form most closely 
resembling FHM, as identifying loci for this subgroup is more challeng-
ing. Another hypothesis relates to oxidative stress and NO signaling73–75.  
Six genes with known links to oxidative stress and NO were identified 
in these 38 loci (REST, GJA1, YAP1, PRDM16, LRP1, and MRVI1)45–50. 
This is in line with previous findings11; however, the DEPICT pathway 
analysis did not show an association between NO-related reconstituted 
gene sets and migraine (FDR > 0.54; Supplementary Table 24).

Notably, in the migraine-subtype analyses, it was possible to identify 
specific loci for migraine without aura but not for migraine with aura.  

However, the heterogeneity analysis (Supplementary Tables 12  
and 13) demonstrated that most of the identified loci were impli-
cated in both migraine subtypes. This suggests that the absence of 
significant loci in the analysis for migraine with aura was mainly due 
to a lack of power owing to the smaller sample size. Additionally, 
as shown by the LD-score analysis (Supplementary Figs. 6–8), the 
amount of heritability captured by the data set for migraine with 
aura was considerably lower than that for migraine without aura, 
such that in order for comparable power to be achieved, a sample 
size two to three times larger would be required. This might reflect a 
higher degree of heterogeneity in the clinical capture, more complex 
underlying biology, or even a greater contribution to risk from low-
frequency and rare variation for this form of the disease.

In conclusion, the 38 genomic loci identified in this study support 
the notion that factors in vascular and smooth muscle tissues con-
tribute to migraine pathophysiology and that the two major subtypes 
of migraine—migraine with aura and migraine without aura—have a 
partially shared underlying genetic susceptibility profile.
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IMPUTE2, https://mathgen.stats.ox.ac.uk/impute/impute_v2.html;  
IHGC, http://www.headachegenetics.org/; MACH, http://www.sph.
umich.edu/csg/abecasis/MACH/tour/imputation.html; matSpD, 
http://neurogenetics.qimrberghofer.edu.au/matSpD; MINIMAC, 
http://genome.sph.umich.edu/wiki/Minimac; PANTHER Gene 
Ontology enrichment, http://geneontology.org/page/go-enrichment-
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org; SHAPEIT, http://www.shapeit.fr; SNPTEST, https://mathgen.
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Methods
Methods and any associated references are available in the online 
version of the paper.
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Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Study design and phenotyping. A description of the study design,  
ascertainment, and phenotyping for each GWA study is provided in the 
Supplementary Note.

Quality control. The 22 individual GWA studies were subjected to pre-
established quality control (QC) protocols as recommended elsewhere76,77. 
Differences in genotyping chips, DNA quality, and calling pipelines neces-
sitated that the QC parameters be tuned separately for each study. At a mini-
mum, we excluded markers that had high ‘missingness’ rates (>5%), that had 
low minor allele frequency (<1%), and that failed a test of Hardy–Weinberg 
equilibrium. We also excluded individuals with a high proportion of missing 
genotypes (>5%) and used identity-by-descent estimates to remove related 
individuals (identity by descent > 0.185). A summary of the genotyping plat-
forms, QC, and software used in each study is provided in Supplementary 
Table 3. To control for population stratification within each study, we merged 
the genotypes passing QC filters with HapMap III data from three populations: 
European (CEU), Asian (CHB+JPT), and African (YRI). We then performed 
a principal-components analysis on the merged data set and excluded any 
(non-European) population outliers. To control for any sub-European popula-
tion structure, we performed a second principal-components analysis within 
each study to ensure that cases and controls were clustering together. Any 
principal components that were significantly associated with the phenotype 
were included as covariates in the model when we calculated test statistics for 
the meta-analysis (Supplementary Table 4).

Imputation. After study-level QC, estimated haplotypes were phased for each 
individual using (in most instances) the program SHAPEIT78. Missing geno-
types were then imputed into these haplotypes using the program IMPUTE2 
(ref. 79) and a mixed-population 1000 Genomes Project16 reference panel 
(March 2012, phase 1, v3 release or later). A minority of contributing studies 
used alternative programs for phasing and imputation (BEAGLE80, MACH81, 
MINIMAC82, or in-house custom software). A summary of software and  
procedures used is provided in Supplementary Table 3.

Statistical analysis. Individual-study association analyses were implemented 
using logistic regression with an additive model on the imputed dosage of the 
effect allele. All models were adjusted for sex and other relevant covariates 
when appropriate (Supplementary Table 4). Because age information was not 
available for all individuals from all studies, we were not able to adjust for it in 
our models. However, we note that all of the GWA studies included adults past 
the typical age of onset; thus age was at most a non-confounding factor, and 
false positive rates would therefore not be affected by its inclusion or exclusion. 
For the within-study association analyses, we used SNPTEST, PLINK, or R. 
The program GWAMA was then used to perform a fixed-effects meta-analysis 
weighted by the inverse variances to obtain a combined effect size, standard 
error, and P value at each marker. We excluded markers in any study that had 
low imputation quality scores (IMPUTE2 INFO < 0.6 or MACH r2 < 0.6) or 
low minor allele frequency (MAF < 0.01). Additionally, we filtered out mark-
ers that were missing from more than half of all studies (12 or more) or that 
exhibited high heterogeneity (heterogeneity index I2 > 0.75). After filtering, 
8,045,569 total markers were tested in the meta-analysis.

Chromosome X meta-analysis. Because of the different ploidy of males  
and females on chromosome X, we implemented a model of X-chromosome 
inactivation that assumes an equal effect of alleles in both males and females. 
We achieved this by scaling male dosages to the range of 0–2 to match that  
of females. In total, 57,756 cases and 299,109 controls were available for the  
X-chromosome analysis (Supplementary Table 1). The sample size was 
smaller than that for the autosomal data because some of the individual GWA 
studies (EGCUT, Rotterdam III, Twins UK, and 846 controls from GSK for  
the German MO study) did not contribute chromosome X data.

LD-score regression analysis. We conducted a univariate heritability analy-
sis based on summary statistics using LD-score regression (LDSC)56 v1.0.0.  

For this analysis, we extracted high-quality common SNPs from the summary 
statistics by filtering the data according to the following criteria: presence 
among the HapMap Project Phase 3 SNPs83, allele matching to 1000 Genomes 
Project data, no strand ambiguity, INFO score > 0.9, MAF ≥ 1%, and missing-
ness less than two-thirds of the 90th percentile of the total sample size. The 
HLA region (chromosome 6, 25–35 Mb) was excluded from the analysis. With 
these data, we used LDSC to quantify the proportion of the total inflation in 
chi-square statistics that could be ascribed to polygenic heritability by calcu-
lating the ratio of the LDSC intercept estimate and the chi-square mean using 
the formula described in the original publication56.

Heterogeneity analysis of migraine subtypes. To determine whether  
heterogeneity between the migraine subtypes might have affected our ability to 
identify new loci, we performed an additional meta-analysis using a subtype-
differentiated approach that allows for different allelic effects between two 
groups58. Because a large proportion of the controls were shared between the 
original data sets for migraine with aura and migraine without aura (Table 1), 
for this analysis we created two additional subsets of the migraine subtype data 
that contained no overlapping controls (Supplementary Table 12). The new 
‘migraine with aura’ subset consisted of 4,837 cases and 49,174 controls, and 
the new ‘migraine without aura’ subset consisted of 4,833 cases and 106,834 
controls. To assess the heterogeneity observed, we chose the 44 index SNPs 
from the primary meta-analysis and applied the subtype-differentiated meta-
analysis method to them. We observed that only 7 out of the 44 SNPs exhibited 
heterogeneity in the subtype-differentiated test (heterogeneity P value < 0.05; 
Supplementary Table 13), suggesting that most loci probably affect risk for 
both subtypes.

Defining credible sets. Within each migraine-associated locus, we defined  
a credible set of variants that could be considered 99% likely to contain  
a causal variant. The method has been described in detail elsewhere53,59  
and is outlined briefly here. Assume D represents the data including the  
genotype matrix X for all of the P variants (the genotype for variant j is  
denoted as xj) and disease status Y (for N individuals), and β represents the 
model parameters. We define the model, denoted by A, as the causal status  
for all of the P variants in the locus: A ≡ {aj}, in which aj is the causal sta-
tus for variant j. aj = 1 if the variant j is causal, and aj = 0 if it is not. We 
assume that there is one and only one genuine signal for each locus; therefore,  
one and only one of the P variants is causal: Σjaj = 1. For convenience, we 
define Aj as the model in which only variant j is causal, and A0 as the model 
in which no variant is causal (null model). The probability of model Aj (where 
variant j is the only causal variant in the locus) given the data can be calculated 
using Bayes’s rule: 

Pr( | ) Pr( , | )
Pr( )

Pr( )
A D D A

A

D
dj j

j= ⋅ ⋅∫ b b
b

We estimate equation (1) using the steepest-descent approach84. Making  
the assumption of a flat prior on the model parameters, we approximate  
the integral over the model parameters using their maximum likelihood  
estimator ˆ ( ˆ )b b j : 

ˆ Pr( | ) Pr( | , ˆ )
Pr( )

Pr( )

| |/
b b

b
A D D A N

A

Dj j j
jj≈ ⋅ ⋅

− 2

where the sample size is denoted by N and the number of fitted parameters for 
model Aj is denoted by |βj|. |βj| is a constant because model Aj has the same 
number of parameters across all variants. In the framework of a generalized 
linear model, the deviance for two nested models follows an approximate  
chi-square distribution. We therefore define c j

2  as the deviance comparing 
the null model and the model in which variant j is causal: 

ˆ log
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We further show that c j
2  can be calculated as the chi-square statistic of 

fitting a binomial model with the disease status (Y) as the dependent variable 
and the genotype of variant j as the explanatory variable: 
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Pr(Aj|D) in equation (2) is then a function of c j
2 : 
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where ̂ Pr( | , ˆ )b bl D A0 0 0= . We make the assumption that the prior causal 
probability for all variants is equal, that is, Pr(Aj) is the same across all  
variants j. Equation (5) can then be simplified with a constant for the term 

l N A Dj
j0

2
⋅ ⋅

−| |/
(Pr( )/Pr( ))

b , and the probability that variant j is causal can 
be calculated using 
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which can be normalized across all variants as 

P( ) Pr( | )/ Pr( | )A A D A Dj j k k≡ Σ

Finally, the 99% credible set of variants is defined as the smallest set of models, 
with each model designating one causal variant, S = {Aj}, such that 

P( ) %AjAj S∈∑ ≥ 99

This credible set of variants has 99% probability of containing the causal vari-
ant, given the assumption that there is a true association and that all possible 
causal variants have been genotyped (both assumptions are likely to be valid 
in genome-wide significant regions of data that have been imputed to the 1000 
Genomes Project). We have made the R script for implementing the method 
freely available online (see “URLs”).

eQTL credible set overlap analysis. To assess whether the association  
statistics in the 38 migraine loci could be explained by credible overlapping 
eQTL signals, we used two eQTL microarray data sets. The first consisted 
of 3,754 samples from peripheral venous blood85, and the second was from 
a meta-analysis of human brain cortex studies of a total of 550 samples86. 
From both studies, we obtained summary statistics from an association test of 
putative cis-eQTLs between all SNP–transcript pairs within a 1-Mb window.  
Then, for the most significant eQTLs (P < 1 × 10−4) found for genes within 
a 1-Mb window of migraine credible set variants (see “Defining credible 
sets”), we created an additional credible set of markers for each eQTL. We 
then tested (using Spearman’s rank correlation) whether there was a signifi-
cant correlation between the association test statistics in each migraine cred-
ible set compared to the expression test statistics in each overlapping eQTL  
credible set. Significant correlation between a migraine credible set and an 
eQTL credible set was taken as evidence that the migraine locus tagged a  
real eQTL. An appropriate significance threshold for multiple testing was 
determined by Bonferroni correction.

GTEx tissue enrichment analysis. We obtained gene sets for each locus  
by taking all genes within 50 kb of credible-set SNPs. We then analyzed  
identified genes for tissue enrichment using publicly available expression  
data from the pilot phase of the GTEx project62, version 3. In this data set, 

(4)(4)

(5)(5)

(6)(6)

(7)(7)

(8)(8)

postmortem samples from 42 human tissues and three cell lines across 1,641 
samples (Supplementary Table 16) were used for bulk RNA sequencing 
according to a unified protocol. All samples were sequenced using Illumina  
76-base-pair paired-end reads. Collapsed reads per kilobase per million 
mapped reads (RPKM) for 52,577 transcripts were filtered for those with 
unique HGNC IDs (n = 20,932). We also excluded transcripts from any  
noncoding RNAs. We ranked all transcripts by mean RPKM across all samples,  
and we generated 100,000 permutations of each credible set gene list by  
selecting a random transcript for each entry in the credible set within ±100 
ranks of the transcript for that gene. For each sample, the RPKM values were 
converted into ranks for that transcript, and sums of ranks within each tissue 
were computed for each gene. We calculated enrichment P values for each  
tissue by taking the total number of instances when the gene list of interest 
had a lower sum of ranks than the permuted sum of ranks (divided by the  
total number of permutations). We estimated the number of independent  
tissues using the matSpD tool87 and then used Bonferroni correction to  
adjust for 27 independent tests (P < 1.90 × 10−3).

Specificity of individual genes in GTEx tissues. We selected the nearest gene 
to the index SNP at each migraine locus and then investigated the individual 
expression activity of each of the selected genes. Because the number of samples 
for some tissues was small, we grouped individual tissues into four categories: 
brain, vascular, gastrointestinal, and other tissues (Supplementary Table 16).  
For each selected gene, we then tested whether the average expression (mean 
RPKM) was significantly higher in a particular tissue group compared with the 
‘other tissues’ category. We assessed significance using a one-tailed t-test and 
used Bonferroni correction to adjust for 114 tests (38 genes × 3 tissue groups). 
Although some genes were observed to be significantly expressed in multiple 
tissue groups, we determined that a gene was tissue specific if it had high 
expression in only one tissue group (i.e., brain, vascular, or gastrointestinal; 
Supplementary Table 25).

eQTL credible set analysis in GTEx tissues. For all tissues and tran-
scripts (filtered as described above), we identified genome-wide significant  
(P < 2 × 10−13) cis-eQTLs within a 1-Mb window of each transcript and created 
credible sets (see “Defining credible sets”) for each eQTL identified in each 
tissue. We found a total of 35 of these significant eQTL credible sets within a 
1-Mb window of the migraine loci; however, only 7 out of the 35 contained 
variants that overlapped with a migraine credible set. For these seven eQTL 
credible sets, we then tested (using Spearman’s rank correlation) whether the 
test statistics between the two overlapping credible sets were significantly  
correlated. Significant correlation between a migraine credible set and an 
eQTL credible set was taken as evidence that the migraine locus tagged a real 
eQTL. Multiple testing was controlled for the use of Bonferroni correction 
(i.e., for seven tests at P < 7.1 × 10−3).

Enhancer enrichment analysis. Markers of gene regulation were defined using 
ChIP-seq data sets from ENCODE66 and the NIH Roadmap Epigenome65 
projects. On the basis of the histone H3K27ac signal, which identifies active 
enhancers, we processed data from 56 cell lines and tissue samples to identify 
cell-type-specific and tissue-specific enhancers, which we define as the 10% 
of enhancers with the highest ratio of reads in that cell or tissue type divided 
by the total reads88. The raw data are publicly available (see “URLs”), and a 
description of the 56 tissues and cell types is provided in Supplementary 
Table 21. We mapped the credible set variants at each migraine locus to these 
enhancer sites and compared the overlap observed with tissue-specific enhanc-
ers relative to a background of 10,000 randomly selected sets of SNPs of equal 
size. We restricted the background selection to 1000 Genomes Project vari-
ants (MAF > 1%) that also passed QC filters in the meta-analysis (to allow 
the selection of only SNPs that had an a priori chance of being associated). 
The selection procedure then involved randomly selecting genomic regions 
with length and density of enhancers equivalent to those found in the original 
locus. Once an appropriate region was found, a set of SNPs was randomly 
selected to match the number of SNPs in the credible set for that locus. If the 
selected SNPs mapped to an equal number of enhancer sites (of any tissue 
type) as credible SNPs from the original locus, then they were added to the 
background set of SNPs for comparison. If the selected SNPs did not map to 
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the correct number of enhancers, the selection procedure was repeated until an 
appropriate set was found. This procedure was repeated 10,000 times for each 
locus to obtain an empirical null distribution. We then estimated the enrich-
ment significance empirically by calculating the proportion of replicates that 
were greater than the observed value. Finally, we used Bonferroni correction 
to adjust for multiple testing of 56 tissue and cell types (P < 8.9 × 10−4).

GO enrichment analysis. The set of 38 genes nearest to the index SNP in 
each migraine locus was chosen and tested for over-representation in Gene 
Ontology (GO) annotations. We used the PANTHER89 tool (see “URLs”) to 
perform the analysis, implementing a binomial test to determine whether the 
number of genes from the migraine test set found in each GO pathway was 
likely to have occurred by chance alone. The association P values were adjusted 
for the number of pathways tested by Bonferroni correction.

DEPICT reconstituted gene set enrichment analysis. DEPICT63 (Data-driven 
Expression Prioritized Integration for Complex Traits) is a computational tool 
that, given a set of GWA study summary statistics, allows prioritization of 
genes in associated loci, enrichment analysis of reconstituted gene sets, and 
tissue enrichment analysis. DEPICT was run using 124 independent genome-
wide significant SNPs as input (PLINK clumping parameters: --clump-p1 
5e-8 --clump-p2 1e-5 --clump-r2 0.6 --clump-kb 250; note that rs12845494 
and rs140002913 could not be mapped). LD distance (r2 > 0.5) was used to 
define locus boundaries (note that this locus definition is different than that 
used elsewhere in the text), yielding 37 autosomal loci comprising 78 genes. 
DEPICT was run using default settings, that is, 500 permutations for bias 
adjustment, 20 replications for FDR estimation, normalized expression data 
from 77,840 Affymetrix microarrays for gene set reconstitution (see ref. 90), 
14,461 reconstituted gene sets for gene set enrichment analysis, and testing of 
209 tissue/cell types assembled from 37,427 Affymetrix U133 Plus 2.0 array 
samples for enrichment in tissue/cell-type expression.

After the analysis, we omitted reconstituted gene sets in which genes in 
the original gene set were not nominally enriched (Wilcoxon rank-sum test) 
because, by design, genes in the original gene set were expected to be enriched 
in the reconstituted gene set. Therefore, a lack of enrichment complicated 
interpretation because the label of the reconstituted gene set may have been 
inaccurate. Hence eight reconstituted gene sets were removed from the 
results: MP:0002089, MP:0002190, ENSG00000151577, ENSG00000168615, 
ENSG00000143322, ENSG00000112531, ENSG00000161021, and 
ENSG00000100320. We also removed an association identified for another 
gene set (ENSG00000056345 PPI, P = 1.7 × 10−4, FDR = 0.04) because it was no 
longer part of the Ensembl database. Finally, we used the Affinity Propagation 
tool91 to cluster related reconstituted gene sets into ten groups (see “URLs”).

DEPICT tissue enrichment analysis. DEPICT used data from 37,427 human 
microarray samples captured on the Affymetrix HGU133a2.0 platform to test 

whether genes in the 38 migraine loci were highly expressed in 209 tissues and 
cell types with Medical Subject Heading (MeSH) annotations. The annotation 
procedure and method for normalizing expression profiles across annotations 
is outlined in the original publication63. The tissue/cell-type enrichment analy-
sis algorithm was conceptually identical to the gene set enrichment analysis 
whereby enrichment P values were calculated empirically using 500 permuta-
tions for bias adjustment and 20 replications for FDR estimation.

Data access. All genome-wide significant and suggestive SNP associations  
(P < 1 × 10−5) from the meta-analysis can be obtained directly from the IHGC 
website (http://www.headachegenetics.org/content/datasets-and-cohorts).  
For access to deeper-level data, please contact the data access committee 
(fimm-dac@helsinki.fi).
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